Search results
Results From The WOW.Com Content Network
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
In this modification, an asparagine or aspartate side chain attacks the following peptide bond, forming a symmetrical succinimide intermediate. Hydrolysis of the intermediate produces either aspartate or the β-amino acid, iso(Asp). For asparagine, either product results in the loss of the amide group, hence "deamidation". hydroxylation
In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another.
[4] [5] The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid ( R−C(=O)−OH ) with the hydroxyl group ( −OH ) replaced by an amino group ( −NR′R″ ); or ...
In molecular biology, a scissile bond is a covalent chemical bond that can be broken by an enzyme. Examples would be the cleaved bond in the self-cleaving hammerhead ribozyme [ 1 ] or the peptide bond of a substrate cleaved by a peptidase.
A peptide microarray is a planar slide with peptides spotted onto it or assembled directly on the surface by in-situ synthesis. Whereas peptides spotted can undergo quality controls that include mass spectrometer analysis and concentration normalization before spotting and result from a single synthetic batch, peptides synthesized directly on the surface may suffer from batch-to-batch ...
Sign in to your AOL account to access your email and manage your account information.
During this step, the actual cleavage of the peptide bond takes place (shown by the green arrow). In the following step, a water molecule (blue), the nucleophilicity of which is again enhanced by His 57 takes the amine's place. In the last step, serine leaves the tetrahedral intermediate and thereby the catalytic triad is regenerated.