Search results
Results From The WOW.Com Content Network
A simple polygonal chain A self-intersecting polygonal chain A closed polygonal chain. In geometry, a polygonal chain [a] is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (,, …,) called its vertices. The curve itself consists of the line segments connecting the ...
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides .
Parts of a simple polygon. A simple polygon is a closed curve in the Euclidean plane consisting of straight line segments, meeting end-to-end to form a polygonal chain. [1] Two line segments meet at every endpoint, and there are no other points of intersection between the line segments.
In mathematics, a stuck unknot is a closed polygonal chain in three-dimensional space (a skew polygon) that is topologically equal to the unknot but cannot be deformed to a simple polygon when interpreted as a mechanical linkage, by rigid length-preserving and non-self-intersecting motions of its segments.
Overlaying the original simple polygon onto its convex hull partitions this convex polygon into regions, one of which is the original polygon. The remaining regions are called pockets. Each pocket is itself a simple polygon, bounded by a polygonal chain on the boundary of the given simple polygon and by a single edge of the convex hull. A ...
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.
In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons, the cells of the arrangement, line segments and rays, the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement.
In computational geometry, the link distance between two points in a polygon is the minimum number of line segments of any polygonal chain within the polygon that has the two points as its endpoints. The link diameter of the polygon is the maximum link distance of any two of its points.