Search results
Results From The WOW.Com Content Network
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
The CML system evolves through discrete time by a mapping on vector sequences. These mappings are a recursive function of two competing terms: an individual non-linear reaction, and a spatial interaction (coupling) of variable intensity. CMLs can be classified by the strength of this coupling parameter(s).
The parameters depend on the physical system under consideration. In the context of fish skin pigmentation, the associated equation is a three field reaction–diffusion one in which the linear parameters are associated with pigmentation cell concentration and the diffusion parameters are not the same for all fields. [9]
In mathematics, the Kuramoto–Sivashinsky equation (also called the KS equation or flame equation) is a fourth-order nonlinear partial differential equation. It is named after Yoshiki Kuramoto and Gregory Sivashinsky , who derived the equation in the late 1970s to model the diffusive–thermal instabilities in a laminar flame front.
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
To see why the evolution equation defining the Ricci flow is indeed a kind of nonlinear diffusion equation, we can consider the special case of (real) two-manifolds in more detail. Any metric tensor on a two-manifold can be written with respect to an exponential isothermal coordinate chart in the form
Reaction–diffusion processes form one class of explanation for the embryonic development of animal coats and skin pigmentation. [5] [6] Another reason for the interest in reaction-diffusion systems is that although they represent nonlinear partial differential equations, there are often possibilities for an analytical treatment. [7] [8] [9]
McKendrick–von Foerster equation in age structure modeling; Nernst–Planck equation in ion flux across biological membranes; Price equation in evolutionary biology; Reaction-diffusion equation in theoretical biology. Fisher–KPP equation in nonlinear traveling waves; FitzHugh–Nagumo model in neural activation; Replicator dynamics in ...