Search results
Results From The WOW.Com Content Network
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form
The conjugate of a Gaussian prime is also a Gaussian prime (this implies that Gaussian primes are symmetric about the real and imaginary axes). A positive integer is a Gaussian prime if and only if it is a prime number that is congruent to 3 modulo 4 (that is, it may be written 4 n + 3 , with n a nonnegative integer) (sequence A002145 in the ...
For a (not necessarily invertible) matrix over any field, the exact necessary and sufficient conditions under which it has an LU factorization are known. The conditions are expressed in terms of the ranks of certain submatrices. The Gaussian elimination algorithm for obtaining LU decomposition has also been extended to this most general case. [10]
It is customary to factor out the leading term, so β 0 is assumed to be 1. The polynomials can be factored into linear factors of the form (a j + n) and (b k + n) respectively, where the a j and b k are complex numbers. For historical reasons, it is assumed that (1 + n) is a factor of B.
Assume we ask the algorithm to find 10 features in order to generate a features matrix W with 10000 rows and 10 columns and a coefficients matrix H with 10 rows and 500 columns. The product of W and H is a matrix with 10000 rows and 500 columns, the same shape as the input matrix V and, if the factorization worked, it is a reasonable ...
Integer factorization algorithms include the Elliptic Curve Method, the Quadratic sieve and the Number field sieve. Algebraic number theory; Magma includes the KANT computer algebra system for comprehensive computations in algebraic number fields. A special type also allows one to compute in the algebraic closure of a field. Module theory and ...
Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):