Search results
Results From The WOW.Com Content Network
Homeothermy is one of the 3 types of thermoregulation in warm-blooded animal species. Homeothermy's opposite is poikilothermy . A poikilotherm is an organism that does not maintain a fixed internal temperature but rather its internal temperature fluctuates based on its environment and physical behaviour.
The honey bee, for example, does so by contracting antagonistic flight muscles without moving its wings (see insect thermoregulation). [ 18 ] [ 19 ] [ 20 ] This form of thermogenesis is, however, only efficient above a certain temperature threshold, and below about 9–14 °C (48–57 °F), the honey bee reverts to ectothermy.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
Thermoregulation, or body temperature control, in animals, including humans. Subcategories. This category has the following 3 subcategories, out of 3 total. D.
A similar example is given by the Senegalese sole (Solea senegalensis), which, when acclimated to temperatures of 26 °C, produced a significantly higher amount of taurine, glutamate, GABA and glycine compared to acclimation to 12 °C. This may mean that the aforementioned compounds aid in antioxidant defense, osmoregulatory processes, or ...
An inspector this week noted that one Triangle restaurant was in need of “better control” to avoid health violations. Roaches and expired food: This week’s Triangle restaurant sanitation ...
Ectotherms typically have lower metabolic rates than endotherms at a given body mass. As a consequence, endotherms generally rely on higher food consumption, and commonly on food of higher energy content. Such requirements may limit the carrying capacity of a given environment for endotherms as compared to its carrying capacity for ectotherms.