Search results
Results From The WOW.Com Content Network
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself).
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.
σ k (n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ 0 (n), the number of divisors of n, is usually written d(n) and σ 1 (n), the sum of the divisors of n, is usually written σ(n). If s > 0,
In mathematics, the amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s ( a )= b and s ( b )= a , where s ( n )=σ( n )- n is equal to the sum of positive divisors of n except n itself (see also divisor function ).
There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers p r p for p ...