When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself).

  3. Hall subgroup - Wikipedia

    en.wikipedia.org/wiki/Hall_subgroup

    For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  5. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.

  6. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    σ k (n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ 0 (n), the number of divisors of n, is usually written d(n) and σ 1 (n), the sum of the divisors of n, is usually written σ(n). If s > 0,

  7. Unitary divisor - Wikipedia

    en.wikipedia.org/wiki/Unitary_divisor

    The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers p r p for p ...

  8. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

  9. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.