Search results
Results From The WOW.Com Content Network
Electron tomography is an extension of traditional transmission electron microscopy and uses a transmission electron microscope to collect the data. In the process, a beam of electrons is passed through the sample at incremental degrees of rotation around the center of the target sample. This information is collected and used to assemble a ...
Charge coupled device (CCD) cameras were first applied to transmission electron microscopy in the 1980s and later became widespread. [3] [4] For use in a TEM, CCDs are typically coupled with a scintillator such as single crystal Yttrium aluminium garnet (YAG) in which electrons from the electron beam are converted to photons, which are then transferred to the sensor of the CCD via a fiber ...
As in other electron tomography techniques, the sample is tilted to different angles relative to the electron beam (typically every 2-3 degrees from about −60° to +60°), and an image is acquired at each angle. [5] This tilt-series of images can then be computationally reconstructed into a three-dimensional view of the object of interest. [6]
As the electron beam passes through the sample, some electrons in the beam lose energy via inelastic scattering interactions with electrons in the sample. In electron energy loss spectroscopy (EELS), the energy lost by the electrons in the beam is measured using an electron spectrometer, allowing features such as plasmons, and elemental ...
This approach is termed ultrafast transmission electron microscopy when stroboscopic pump-probe illumination is used: an image is formed by the accumulation of many ultrashort electron pulses (typically of hundreds of femtoseconds) with a fixed time delay between the arrival of the electron pulse and the sample excitation. On the other hand ...
In conventional CT machines, an X-ray tube and detector are physically rotated behind a circular shroud (see the image above right). An alternative, short lived design, known as electron beam tomography (EBT), used electromagnetic deflection of an electron beam within a very large conical X-ray tube and a stationary array of detectors to achieve very high temporal resolution, for imaging of ...
The E-T secondary electron detector can be used in the SEM's back-scattered electron mode by either turning off the Faraday cage or by applying a negative voltage to the Faraday cage. However, better back-scattered electron images come from dedicated BSE detectors rather than from using the E–T detector as a BSE detector.
Electron beam computed tomography (EBCT) is a fifth generation computed tomography (CT) scanner in which the X-ray tube is not mechanically spun in order to rotate the source of X-ray photons. This different design was explicitly developed to better image heart structures that never stop moving, performing a complete cycle of movement with each ...