When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Real-valued function - Wikipedia

    en.wikipedia.org/wiki/Real-valued_function

    In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...

  3. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    A real-valued function of a real variable is a function that takes as input a real number, commonly represented by the variable x, for producing another real number, the value of the function, commonly denoted f(x). For simplicity, in this article a real-valued function of a real variable will be simply called a function. To avoid any ambiguity ...

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    In introductory calculus, when the word function is used without qualification, it means a real-valued function of a single real variable. The more general definition of a function is usually introduced to second or third year college students with STEM majors, and in their senior year they are introduced to calculus in a larger, more rigorous ...

  5. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Generalizing to a real-valued function of a real variable, a slight modification of this definition (replacement of sequence () and term by function and value () and natural numbers and by real numbers and , respectively) yields the definition of the limit of () as increases without bound, notated ().

  6. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    A differentiable function of one real variable is a function whose derivative exists at each point in its domain. As a result, the graph of a differentiable function must have a (non-vertical) tangent line at each point in its domain, be relatively smooth, and cannot contain any breaks, bends, or cusps. differential (infinitesimal)

  7. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Instead, Cauchy formulated calculus in terms of geometric ideas and infinitesimals. Thus, his definition of continuity required an infinitesimal change in x to correspond to an infinitesimal change in y. He also introduced the concept of the Cauchy sequence, and started the formal theory of complex analysis.

  8. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The function f(x) is called the integrand, the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [a, b], called the interval of integration. [18] A function is said to be integrable if its integral over its domain is finite. If limits are specified, the integral is called a ...