Ad
related to: aristotelian triangle examples math
Search results
Results From The WOW.Com Content Network
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180° if the geometry is elliptic. The defect of a triangle is the numerical value (180° − sum of the measures of the angles of the triangle). This result may also be stated as ...
Aristotelian views of (cardinal or counting) numbers begin with Aristotle's observation that the number of a heap or collection is relative to the unit or measure chosen: "'number' means a measured plurality and a plurality of measures ... the measure must always be some identical thing predicable of all the things it measures, e.g. if the things are horses, the measure is 'horse'."
This geometrical view of non-integer numbers remained dominant until the end of Middle Ages, although the rise of algebra led to consider them independently from geometry, which implies implicitly that there are foundational primitives of mathematics. For example, the transformations of equations introduced by Al-Khwarizmi and the cubic and ...
For example, the tools of linguistics are not generally applied to the symbol systems of mathematics, that is, mathematics is studied in a markedly different way from other languages. If mathematics is a language, it is a different type of language from natural languages. Indeed, because of the need for clarity and specificity, the language of ...
In the system of Aristotelian logic, the triangle of opposition is a diagram [which?] representing the different ways in which each of the three propositions of the system is logically related ('opposed') to each of the others. The system is also useful in the analysis of syllogistic logic, serving to identify the allowed logical conversions ...
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles .