Ad
related to: solving combination circuits- Contact Us
Have questions or need a quote?
Contact our team today.
- Request a Quote
Request a quote online
Response within 3 days
- Contact Us
Search results
Results From The WOW.Com Content Network
Combinational logic is used in computer circuits to perform Boolean algebra on input signals and on stored data. Practical computer circuits normally contain a mixture of combinational and sequential logic. For example, the part of an arithmetic logic unit, or ALU, that does mathematical calculations is constructed using combinational logic.
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic.It was introduced by Moses Schönfinkel [1] and Haskell Curry, [2] and has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages.
Fourier transforms are used for frequency analysis and signal processing. Laplace transforms are used for solving differential equations and analyzing system stability. Numerical Methods: Employed for simulating and solving complex circuits that cannot be solved analytically. Used in computer-aided design tools for electronic circuit design.
Examples of don't-care terms are the binary values 1010 through 1111 (10 through 15 in decimal) for a function that takes a binary-coded decimal (BCD) value, because a BCD value never takes on such values (so called pseudo-tetrades); in the pictures, the circuit computing the lower left bar of a 7-segment display can be minimized to a b + a c by an appropriate choice of circuit outputs for ...
An electronic circuit can usually be categorized as an analog circuit, a digital circuit, or a mixed-signal circuit (a combination of analog circuits and digital circuits). The most widely used semiconductor device in electronic circuits is the MOSFET (metal–oxide–semiconductor field-effect transistor). [3]
A particular circuit acts only on inputs of fixed size. However, formal languages (the string-based representations of decision problems) contain strings of different lengths, so languages cannot be fully captured by a single circuit (in contrast to the Turing machine model, in which a language is fully described by a single Turing machine).
Race condition in a logic circuit. Here, ∆t 1 and ∆t 2 represent the propagation delays of the logic elements. When the input value A changes from low to high, the circuit outputs a short spike of duration (∆t 1 + ∆t 2) − ∆t 2 = ∆t 1.
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.