When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.

  3. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    The Fermi level is also usually indicated in the diagram. Sometimes the intrinsic Fermi level, E i, which is the Fermi level in the absence of doping, is shown. These diagrams are useful in explaining the operation of many kinds of semiconductor devices.

  4. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    E i: The intrinsic Fermi level may be included in a semiconductor, to show where the Fermi level would have to be for the material to be neutrally doped (i.e., an equal number of mobile electrons and holes). E imp: Impurity energy level. Many defects and dopants add states inside the band gap of a semiconductor or insulator. It can be useful to ...

  5. Moss–Burstein effect - Wikipedia

    en.wikipedia.org/wiki/Moss–Burstein_effect

    In the case of a degenerate semiconductor, an electron from the top of the valence band can only be excited into conduction band above the Fermi level (which now lies in conduction band) since all the states below the Fermi level are occupied states. Pauli's exclusion principle forbids excitation into these occupied states. Thus we observe an ...

  6. Semiconductor - Wikipedia

    en.wikipedia.org/wiki/Semiconductor

    The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. [26] Doped semiconductors are referred to as extrinsic. [27] By adding impurity to the pure semiconductors, the electrical conductivity may be varied by factors of thousands or millions. [28]

  7. Intrinsic semiconductor - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_semiconductor

    The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg 0.8 Cd 0.2 Te. The conductivity of a semiconductor can be modeled in terms of the band theory of solids.

  8. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  9. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.