When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A machine learning model is a type of mathematical model that, once "trained" on a given dataset, can be used to make predictions or classifications on new data.

  3. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant . [ 1 ]

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  5. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  8. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    A learning algorithm over is a computable map from to . In other words, it is an algorithm that takes as input a finite sequence of training samples and outputs a function from X {\displaystyle X} to Y {\displaystyle Y} .

  9. Cobweb (clustering) - Wikipedia

    en.wikipedia.org/wiki/Cobweb_(clustering)

    COBWEB is an incremental system for hierarchical conceptual clustering.COBWEB was invented by Professor Douglas H. Fisher, currently at Vanderbilt University. [1] [2]COBWEB incrementally organizes observations into a classification tree.