When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.

  3. Vogel–Fulcher–Tammann equation - Wikipedia

    en.wikipedia.org/wiki/Vogel–Fulcher–Tammann...

    The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.

  4. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.

  5. Williams–Landel–Ferry equation - Wikipedia

    en.wikipedia.org/wiki/Williams–Landel–Ferry...

    Using such universal parameters allows one to guess the temperature dependence of a polymer by knowing the viscosity at a single temperature. In reality the universal parameters are not that universal, and it is much better to fit the WLF parameters to the experimental data, within the temperature range of interest.

  6. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...

  7. Mark–Houwink equation - Wikipedia

    en.wikipedia.org/wiki/Mark–Houwink_equation

    From this equation the molecular weight of a polymer can be determined from data on the intrinsic viscosity and vice versa. The values of the Mark–Houwink parameters, a {\displaystyle a} and K {\displaystyle K} , depend on the particular polymer- solvent system as well as temperature.

  8. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  9. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]