Search results
Results From The WOW.Com Content Network
In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.
The probability that X n = 0 occurs for infinitely many n is equivalent to the probability of the intersection of infinitely many [X n = 0] events. The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr(X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma ...
The conditional probability can be found by the quotient of the probability of the joint intersection of events A and B, that is, (), the probability at which A and B occur together, and the probability of B: [2] [6] [7] = ().
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...
Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.
The probability measure function must satisfy two simple requirements: First, the probability of a countable union of mutually exclusive events must be equal to the countable sum of the probabilities of each of these events. For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss ...