When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    On the right Nicomachus's example with numbers 49 and 21 resulting in their GCD of 7 (derived from Heath 1908:300). In mathematics , the Euclidean algorithm , [ note 1 ] or Euclid's algorithm , is an efficient method for computing the greatest common divisor (GCD) of two integers , the largest number that divides them both without a remainder .

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  6. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make ...

  7. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In general, not every GCD in the above product will be a non-trivial factor of (), but some are, providing the factors we seek. Berlekamp's algorithm finds polynomials g ( x ) {\displaystyle g(x)} suitable for use with the above result by computing a basis for the Berlekamp subalgebra.

  8. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    However, the algorithm fails when p - 1 has large prime factors, as is the case for numbers containing strong primes, for example. ECM gets around this obstacle by considering the group of a random elliptic curve over the finite field Z p , rather than considering the multiplicative group of Z p which always has order p − 1.

  9. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    If a is a quadratic residue modulo n and gcd(a,n) = 1, then (⁠ a / n ⁠) = 1. But, unlike the Legendre symbol: If (⁠ a / n ⁠) = 1 then a may or may not be a quadratic residue modulo n. This is because for a to be a quadratic residue modulo n, it has to be a quadratic residue modulo every prime factor of n.