Ads
related to: factoring polynomials kuta pdf free printablestudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
To factorize the initial polynomial, it suffices to factorize each square-free factor. Square-free factorization is therefore the first step in most polynomial factorization algorithms. Yun's algorithm extends this to the multivariate case by considering a multivariate polynomial as a univariate polynomial over a polynomial ring.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
It follows from the formula that r is the quotient of two polynomials of degree s if the method has s stages. Explicit methods have a strictly lower triangular matrix A, which implies that det(I − zA) = 1 and that the stability function is a polynomial. [32] The numerical solution to the linear test equation decays to zero if | r(z) | < 1 ...
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.