Ad
related to: 2x times x answer generator
Search results
Results From The WOW.Com Content Network
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set .
The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is
The multiplication sign (×), also known as the times sign or the dimension sign, is a mathematical symbol used to denote the operation of multiplication, which results in a product. [ 1 ] The symbol is also used in botany , in botanical hybrid names .
X axis = multiplier. Y axis = product. Extension of this pattern into other quadrants gives the reason why a negative number times a negative number yields a positive number. Note also how multiplication by zero causes a reduction in dimensionality, as does multiplication by a singular matrix where the determinant is 0. In this process ...
In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product x 0 · x 1 ·⋯· x n so that the order of multiplication is completely specified. For example, C 2 = 2 which corresponds to the two expressions x 0 · (x 1 · x 2) and (x 0 · x 1) · x 2.
Given a curve, E, defined by some equation in a finite field (such as E: y 2 = x 3 + ax + b), point multiplication is defined as the repeated addition of a point along that curve. Denote as nP = P + P + P + … + P for some scalar (integer) n and a point P = (x, y) that lies on the curve, E. This type of curve is known as a Weierstrass curve.
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.
Throws that move to the other hand are marked by an x following the number. Thus a synchronous three-prop shower is denoted (4x,2x), meaning one hand continually throws a low throw or 'zip' to the opposite hand, while the other continually makes a higher throw to the first. Sequences of bracketed pairs are written without delimiting markers.