Search results
Results From The WOW.Com Content Network
So explicitly called the Pearson's correlation coefficient function in MATLAB using corr() rather than corr2(), but the results are completely the same. However, in many cases the square root of the R^2 of the least squares fit found via polyfit() is significantly below Pearson's r, which is always around -0.7 to -0.85.
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
Polynomial regression models are usually fit using the method of least squares.The least-squares method minimizes the variance of the unbiased estimators of the coefficients, under the conditions of the Gauss–Markov theorem.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both).
The Weierstrass approximation theorem states that for every continuous function f(x) defined on an interval [a,b], there exists a set of polynomial functions P n (x) for n=0, 1, 2, ..., each of degree at most n, that approximates f(x) with uniform convergence over [a,b] as n tends to infinity, that is,
The Steinhart–Hart equation is a model relating the varying electrical resistance of a semiconductor to its varying temperatures.The equation is = + + (), where is the temperature (in kelvins),
The determinant of a square Vandermonde matrix is called a Vandermonde polynomial or Vandermonde determinant.Its value is the polynomial = < ()which is non-zero if and only if all are distinct.