Search results
Results From The WOW.Com Content Network
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10 −23 J K −1. The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
The vibrational temperature is commonly used in thermodynamics, to simplify certain equations.It has units of temperature and is defined as = ~ = where is the Boltzmann constant, is the speed of light, ~ is the wavenumber, and (Greek letter nu) is the characteristic frequency of the oscillator.
Here, k ≈ 1.38 × 10 −23 J/K is the Boltzmann constant and kT 0 is the available noise power density (the noise is thermal noise, Johnson noise). As a numerical example: A receiver has a bandwidth of 100 MHz, a noise figure of 1.5 dB and the physical temperature of the system is 290 K.
A quantum harmonic oscillator has an energy spectrum characterized by: , = (+) where j runs over vibrational modes and is the vibrational quantum number in the jth mode, is the Planck constant, h, divided by and is the angular frequency of the jth mode. Using this approximation we can derive a closed form expression for the vibrational ...
For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
In statistical mechanics, configuration entropy is the portion of a system's entropy that is related to discrete representative positions of its constituent particles. For example, it may refer to the number of ways that atoms or molecules pack together in a mixture, alloy or glass, the number of conformations of a molecule, or the number of spin configurations in a magnet.