When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix (a process known as diagonalization).

  3. Courant minimax principle - Wikipedia

    en.wikipedia.org/wiki/Courant_minimax_principle

    Also (in the maximum theorem) subsequent eigenvalues and eigenvectors are found by induction and orthogonal to each other; therefore, = with , =, <. The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if || x || = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid .

  4. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    Proof: Let D be the diagonal matrix with entries equal to the diagonal entries of A and let B ( t ) = ( 1 − t ) D + t A . {\displaystyle B(t)=(1-t)D+tA.} We will use the fact that the eigenvalues are continuous in t {\displaystyle t} , and show that if any eigenvalue moves from one of the unions to the other, then it must be outside all the ...

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The total geometric multiplicity of , = = (),, is the dimension of the sum of all the eigenspaces of 's eigenvalues, or equivalently the maximum number of linearly independent eigenvectors of . If γ A = n {\displaystyle \gamma _{A}=n} , then

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called the algebraic multiplicity of the eigenvalue. [3] [4] [5] If the operator is originally given by a square matrix M, then its Jordan normal form is also called the Jordan normal form of M. Any square matrix has ...

  8. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    However, the real parts of its eigenvalues remain non-negative by Gershgorin's circle theorem. Similarly, a Hermitian strictly diagonally dominant matrix with real positive diagonal entries is positive definite. No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU ...

  9. Schur–Horn theorem - Wikipedia

    en.wikipedia.org/wiki/Schur–Horn_theorem

    Schur–Horn theorem: Given any desired real eigenvalues and a non-increasing real sequence of desired diagonal elements , there exists a Hermitian matrix with these eigenvalues and diagonal elements if and only if these two sequences have the same sum and for every possible integer , the sum of the first desired diagonal elements never exceeds ...