Search results
Results From The WOW.Com Content Network
The sum-product conjecture informally says that one of the sum set or the product set of any set must be nearly as large as possible. It was originally conjectured by Erdős in 1974 to hold whether A is a set of integers, reals, or complex numbers. [3] More precisely, it proposes that, for any set A ⊂ ℂ, one has
Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time (/). To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in increasing order (starting at the smallest element).
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets. The problem ...
The natural numbers 0 and 1 are trivial sum-product numbers for all , and all other sum-product numbers are nontrivial sum-product numbers. For example, the number 144 in base 10 is a sum-product number, because 1 + 4 + 4 = 9 {\displaystyle 1+4+4=9} , 1 × 4 × 4 = 16 {\displaystyle 1\times 4\times 4=16} , and 9 × 16 = 144 {\displaystyle 9 ...
There is an optimization version of the partition problem, which is to partition the multiset S into two subsets S 1, S 2 such that the difference between the sum of elements in S 1 and the sum of elements in S 2 is minimized. The optimization version is NP-hard, but can be solved efficiently in practice. [4]
Two prominent examples occur for Banach spaces and Hilbert spaces. In some classical texts, the phrase "direct sum of algebras over a field" is also introduced for denoting the algebraic structure that is presently more commonly called a direct product of algebras; that is, the Cartesian product of the underlying sets with the componentwise ...
There are 2 n minterms of n variables, since a variable in the minterm expression can be in either its direct or its complemented form—two choices per variable. Minterms are often numbered by a binary encoding of the complementation pattern of the variables, where the variables are written in a standard order, usually alphabetical.
If an element lies in both, there will be two effectively distinct copies of the value in A + B, one from A and one from B. In type theory, a tagged union is called a sum type. Sum types are the dual of product types. Notations vary, but usually the sum type A + B comes with two introduction forms inj 1: A → A + B and inj 2: B → A + B.