Ad
related to: cmos camera working principle name
Search results
Results From The WOW.Com Content Network
A micrograph of the corner of the photosensor array of a webcam digital camera Image sensor (upper left) on the motherboard of a Nikon Coolpix L2 6 MP. The two main types of digital image sensors are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor), fabricated in complementary MOS (CMOS) or N-type MOS (NMOS or Live MOS) technologies.
CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), [citation needed] and lensless imaging for, e.g., blood cells.
2009 Nobel Prize in Physics laureates George E. Smith and Willard Boyle, 2009, photographed on a Nikon D80, which uses a CCD sensor. The basis for the CCD is the metal–oxide–semiconductor (MOS) structure, [2] with MOS capacitors being the basic building blocks of a CCD, [1] [3] and a depleted MOS structure used as the photodetector in early CCD devices.
CMOS inverter (a NOT logic gate). Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", / s iː m ɑː s /, /-ɒ s /) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. [1]
Incident light generates charge in the capacitors, which is sequentially read and processed to form an image. CCDs are commonly used in digital cameras and scientific imaging applications. CMOS Image Sensors (CIS): CMOS image sensors are based on complementary metal-oxide-semiconductor (CMOS) technology. They integrate photodetectors and signal ...
The most common sensor applications with a sampling rate of less than 1000 Hz are CCD or CMOS cameras. The sensor is partitioned into individual pixels whose exposure value can be read out sequentially. The position of the light spot can be computed with the methods of photogrammetry directly from the brightness distribution.
This page was last edited on 5 October 2019, at 04:46 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
While back-illuminated electron-multiplying CCD (EMCCD) cameras are optimal for purposes requiring the lowest noise and dark currents, sCMOS technology's higher pixel count and lower cost result in its use in a wide range of precision applications. sCMOS devices can capture data in a global-shutter “snapshot” mode over all the pixels or ...