Search results
Results From The WOW.Com Content Network
The static keyword (static and extern are mutually exclusive), applied to the definition of an external variable, changes this a bit: the variable can only be accessed by the functions in the same module where it was defined. But it is possible for a function in the same module to pass a reference (pointer) of the variable to another function ...
Such extern declarations are often placed in a shared header file, since it is common practice for all .c files in a project to include at least one .h file: the standard header file errno.h is an example, making the errno variable accessible to all modules in a project.
32-bit compilers emit, respectively: _f _g@4 @h@4 In the stdcall and fastcall mangling schemes, the function is encoded as _name@X and @name@X respectively, where X is the number of bytes, in decimal, of the argument(s) in the parameter list (including those passed in registers, for fastcall).
For #include guards to work properly, each guard must test and conditionally set a different preprocessor macro. Therefore, a project using #include guards must work out a coherent naming scheme for its include guards, and make sure its scheme doesn't conflict with that of any third-party headers it uses, or with the names of any globally visible macros.
C++ allows namespace-level constants, variables, and functions. In Java, such entities must belong to some given type, and therefore must be defined inside a type definition, either a class or an interface. In C++, objects are values, while in Java they are not. C++ uses value semantics by default, while Java always uses reference semantics. To ...
Likewise, for C code to call a C++ function bar(), the C++ code for bar() must be declared with extern "C". A common practice for header files to maintain both C and C++ compatibility is to make its declaration be extern "C" for the scope of the header: [21]
Information hiding is accomplished by furnishing a compiled version of the source code that is interfaced via a header file. Almost always, there is a way to override such protection – usually via reflection API (Ruby, Java, C#, etc.), sometimes by mechanism like name mangling , or special keyword usage like friend in C++.
Some things, like types, templates, and extern inline functions, can be defined in more than one translation unit. For a given entity, each definition must have the same sequence of tokens. Non-extern objects and functions in different translation units are different entities, even if their names and types are the same.