When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  4. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    At absolute zero temperature, all of the electrons have energy below the Fermi level; but at non-zero temperatures the energy levels are filled following a Fermi-Dirac distribution. In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction ...

  5. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    E i: The intrinsic Fermi level may be included in a semiconductor, to show where the Fermi level would have to be for the material to be neutrally doped (i.e., an equal number of mobile electrons and holes). E imp: Impurity energy level. Many defects and dopants add states inside the band gap of a semiconductor or insulator. It can be useful to ...

  6. Metal–semiconductor junction - Wikipedia

    en.wikipedia.org/wiki/Metal–semiconductor_junction

    The Fermi level pinning effect is strong in many commercially important semiconductors (Si, Ge, GaAs), [5] and thus can be problematic for the design of semiconductor devices. For example, nearly all metals form a significant Schottky barrier to n -type germanium and an ohmic contact to p -type germanium, since the valence band edge is strongly ...

  7. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  8. Stay updated with breaking news, politics, sports, and the latest headlines on AOL.com.

  9. Field effect (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Field_effect_(semiconductor)

    At larger applied voltages, however, as in the bottom panel, the conduction band edge is lowered sufficiently to cause significant population of these levels in a narrow surface layer, called an inversion layer because the electrons are opposite in polarity to the holes originally populating the semiconductor.