Ads
related to: stochastic ordering formula example questions worksheet printable
Search results
Results From The WOW.Com Content Network
In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders , so that one random variable A {\displaystyle A} may be neither stochastically greater than, less than, nor equal to another random variable B {\displaystyle B} .
Let (Ω, Σ, P) be a probability space.Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces.Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.
The first hitting time is defined as the time when the stochastic process first reaches the threshold. It is very important to distinguish whether the sample path of the parent process is latent (i.e., unobservable) or observable, and such distinction is a characteristic of the FHT model. By far, latent processes are most common.
In stochastic analysis, a part of the mathematical theory of probability, a predictable process is a stochastic process whose value is knowable at a prior time. The predictable processes form the smallest class that is closed under taking limits of sequences and contains all adapted left-continuous processes.
Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:
Stochastic chemical kinetics provide yet another example of the use of the master equation. A master equation may be used to model a set of chemical reactions when the number of molecules of one or more species is small (of the order of 100 or 1000 molecules). [ 4 ]
The Bessel process of order n is the real-valued process X given (when n ≥ 2) by = ‖ ‖, where ||·|| denotes the Euclidean norm in R n and W is an n-dimensional Wiener process (Brownian motion). For any n, the n-dimensional Bessel process is the solution to the stochastic differential equation (SDE)
A σ-algebra defines the set of events that can be measured, which in a probability context is equivalent to events that can be discriminated, or "questions that can be answered at time ". Therefore, a filtration is often used to represent the change in the set of events that can be measured, through gain or loss of information.