When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. List of convolutions of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_convolutions_of...

    In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    These Gaussians are plotted in the accompanying figure. The product of two Gaussian functions is a Gaussian, and the convolution of two Gaussian functions is also a Gaussian, with variance being the sum of the original variances: = +. The product of two Gaussian probability density functions (PDFs), though, is not in general a Gaussian PDF.

  5. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The term convolution refers to both the resulting function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function.

  7. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]

  8. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    That is, for any two random variables X 1, X 2, both have the same probability distribution if and only if =. [citation needed] If a random variable X has moments up to k-th order, then the characteristic function φ X is k times continuously differentiable on the entire real line.

  9. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A key fact of Gaussian processes is that they can be completely defined by their second-order statistics. [5] Thus, if a Gaussian process is assumed to have mean zero, defining the covariance function completely defines the process' behaviour.