Search results
Results From The WOW.Com Content Network
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
William Betz was active in the movement to reform mathematics in the United States at that time, had written many texts on elementary mathematics topics and had "devoted his life to the improvement of mathematics education". [3] Many students and educators in the US now use the word "FOIL" as a verb meaning "to expand the product of two ...
Argument of a function in mathematical functions; A set of coordinates in a coordinate system; Tuple, a sequence of elements; The greatest common divisor of two numbers; Equivalence class congruence, especially for modular arithmetic or modulo an ideal; A higher order derivative in Lagrange's notation; Binomial or multinomial coefficient
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking () = and () =, which gives ( a + b ) n e ( a + b ) x = e ( a + b ) x ∑ k = 0 n ( n k ) a n − k b k , {\displaystyle (a+b)^{n}e^{(a+b)x}=e^{(a+b)x}\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b ...
The usual argument to compute the sum of the binomial series goes as follows. Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1.