When.com Web Search

  1. Ads

    related to: pca resume sample

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  4. Property condition assessment - Wikipedia

    en.wikipedia.org/wiki/Property_condition_assessment

    Property condition assessments (PCAs) (also known as the property condition report, or PCR) are due diligence projects associated with commercial real estate.Commercial property and building inspections are important for clients seeking to know the condition of a property or real estate they may be purchasing, leasing, financing or simply maintaining.

  5. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    A sample scree plot produced in R.The Kaiser criterion is shown in red.. In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. [1]

  6. Sparse PCA - Wikipedia

    en.wikipedia.org/wiki/Sparse_PCA

    Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.

  7. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...

  1. Ads

    related to: pca resume sample