Search results
Results From The WOW.Com Content Network
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive .
From this bottom, the average binding energy per nucleon slowly decreases with increasing atomic mass number. The heavy nuclide 238 U is not stable, but is slow to decay with a half-life of 4.5 billion years. [1] It has relatively small binding energy per nucleon. For β − decay, nuclear reactions have the generic form A Z X → A Z+1 X ...
Considering all decay modes, various models indicate a shift of the center of the island (i.e., the longest-living nuclide) from 298 Fl to a lower atomic number, and competition between alpha decay and spontaneous fission in these nuclides; [83] these include 100-year half-lives for 291 Cn and 293 Cn, [55] [78] a 1000-year half-life for 296 Cn ...
Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 81,000 years. 59 Ni has found many applications in isotope geology. 59 Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment. Nickel-60 is the daughter product of the extinct radionuclide 60 Fe ...
The isobar forming 132 Te/ 132 I is: Tin-132 (half-life 40 s) decaying to antimony-132 (half-life 2.8 minutes) decaying to tellurium-132 (half-life 3.2 days) decaying to iodine-132 (half-life 2.3 hours) which decays to stable xenon-132. The creation of tellurium-126 is delayed by the long half-life (230 k years) of tin-126.
Entries starting with a ">" indicates that no decay has ever been observed, with null experiments establishing lower limits for the half-life. Such elements are considered stable unless a decay can be observed (establishing an actual estimate for the half-life). Note half-lives may be imprecise estimates and can be subject to significant revision.