Ad
related to: light slowing down in water
Search results
Results From The WOW.Com Content Network
Slow light is a dramatic reduction in the group velocity of light, not the phase velocity. Slow light effects are not due to abnormally large refractive indices, as will be explained below. The simplest picture of light given by classical physics is of a wave or disturbance in the electromagnetic field.
The light has effectively been slowed. When light returns to a vacuum and there are no electrons nearby, this slowing effect ends and its speed returns to c. When light enters a slower medium at an angle, one side of the wavefront is slowed before the other. This asymmetrical slowing of the light causes it to change the angle of its travel.
As an extreme example of light "slowing" in matter, two independent teams of physicists claimed to bring light to a "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium. The popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of ...
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
The light wave traveling in the medium is the macroscopic superposition (sum) of all such contributions in the material: the original wave plus the waves radiated by all the moving charges. This wave is typically a wave with the same frequency but shorter wavelength than the original, leading to a slowing of the wave's phase velocity.
The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices).In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular wavelength.
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
Fizeau's experiment showed a faster speed of light in water moving in the same direction and a slower speed when the water moved opposite the light. However the amount of difference in the speed of light was only a fraction of the water speed.