When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola: the midpoints of parallel chords lie on a line. Hyperbola: the midpoint of a chord is the midpoint of the corresponding chord of the asymptotes. The midpoints of parallel chords of a hyperbola lie on a line through the center (see diagram). The points of any chord may lie on different branches of the hyperbola.

  3. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The transverse axis of a hyperbola coincides with the major axis. [ 4 ] In a hyperbola, a conjugate axis or minor axis of length 2 b {\displaystyle 2b} , corresponding to the minor axis of an ellipse, can be drawn perpendicular to the transverse axis or major axis, the latter connecting the two vertices (turning points) of the hyperbola, with ...

  4. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).

  5. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    As approaches from above, the limit of the pencil of confocal hyperbolas degenerates to the relative complement of that line segment with respect to the x-axis; that is, to the two rays with endpoints at the foci pointed outward along the x-axis (an infinitely flat hyperbola). These two limit curves have the two foci in common.

  6. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

  7. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    The eccentricity is directly related to the angle between the asymptotes. With eccentricity just over 1 the hyperbola is a sharp "v" shape. At = the asymptotes are at right angles. With > the asymptotes are more than 120° apart, and the periapsis distance is greater than the semi major axis. As eccentricity increases further the motion ...

  8. Conjugate hyperbola - Wikipedia

    en.wikipedia.org/wiki/Conjugate_hyperbola

    In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex. Each cone has an ...

  9. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.