Search results
Results From The WOW.Com Content Network
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
Helmholtz free energy: A, F = J ML 2 T −2: Landau potential, Landau free energy, Grand potential: Ω, Φ G = J ML 2 T −2: Massieu potential, Helmholtz free entropy: Φ = / J⋅K −1: ML 2 T −2 Θ −1: Planck potential, Gibbs free entropy: Ξ
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. [1] [2] At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a ...
The differential form of Helmholtz free energy is = = (), = From symmetry of second derivatives = and therefore that = The other two Maxwell relations can be derived from differential form of enthalpy = + and the differential form of Gibbs free energy = in a similar way.
Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy. The Gibbs free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy, p is the pressure, and V is the ...
The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]