Search results
Results From The WOW.Com Content Network
Stress is defined as the force across a small boundary per unit area of that boundary, for all orientations of the boundary. [7] Derived from a physical quantity (force) and a purely geometrical quantity (area), stress is also a physical quantity, like velocity, torque or energy , that can be quantified and analyzed without explicit ...
Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre (N/m 2); similarly, the pound-force per square inch (psi, symbol lbf/in 2) is the traditional unit of pressure in the imperial and US customary systems.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
Tensile strength is defined as a stress, which is measured as force per unit area. For some non-homogeneous materials (or for assembled components) it can be reported just as a force or as a force per unit width.
Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical ...
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
It is usually defined as the ultimate (breaking) force of the fiber (in gram-force units) divided by the denier. Because denier is a measure of the linear density, the tenacity works out to be not a measure of force per unit area, but rather a quasi-dimensionless measure analogous to specific strength. [45]
In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of motion, if there is no additional force to balance it. The resulting force is always directed from the region of higher-pressure ...