Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. [1]
Several distributions are commonly used in survival analysis, including the exponential, Weibull, gamma, normal, log-normal, and log-logistic. [3] [6] These distributions are defined by parameters. The normal (Gaussian) distribution, for example, is defined by the two parameters mean and standard deviation.
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2] There are two equivalent parameterizations in common use:
The Weibull distribution (including the exponential distribution as a special case) can be parameterised as either a proportional hazards model or an AFT model, and is the only family of distributions to have this property. The results of fitting a Weibull model can therefore be interpreted in either framework.
Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables. In some fields of application the generalized extreme value distribution is known as the Fisher–Tippett distribution, named after R.A. Fisher and L.H.C. Tippett who recognised three different forms outlined ...
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function It has the cumulative distribution function
The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory. The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems; The inverse-gamma distribution; The generalized gamma distribution