Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial( n , p ) random variable, and parameter p is a random variable with beta( α , β ) distribution, then X is distributed as a Beta-Binomial( α , β , n ).
In some cases, such as the air conditioner example, the distribution of survival times may be approximated well by a function such as the exponential distribution. Several distributions are commonly used in survival analysis, including the exponential, Weibull, gamma, normal, log-normal, and log-logistic.
The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory. The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems; The inverse-gamma distribution; The generalized gamma distribution
In genomics, the gamma distribution was applied in peak calling step (i.e., in recognition of signal) in ChIP-chip [41] and ChIP-seq [42] data analysis. In Bayesian statistics, the gamma distribution is widely used as a conjugate prior. It is the conjugate prior for the precision (i.e. inverse of the variance) of a normal distribution.
Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. [1]
They showed that the exponentiated Weibull distribution has increasing, decreasing, bathtub, and unimodal hazard rates. The exponentiated exponential distribution proposed by Gupta and Kundu (1999, 2001) is a special case of the exponentiated Weibull family. Later, the moments of the EW distribution were derived by Choudhury (2005).
The Weibull distribution (including the exponential distribution as a special case) can be parameterised as either a proportional hazards model or an AFT model, and is the only family of distributions to have this property. The results of fitting a Weibull model can therefore be interpreted in either framework.