When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Yukawa potential - Wikipedia

    en.wikipedia.org/wiki/Yukawa_potential

    The potential is monotonically increasing in r and it is negative, implying the force is attractive. In the SI system, the unit of the Yukawa potential is the inverse meter . The Coulomb potential of electromagnetism is an example of a Yukawa potential with the e − α m r {\displaystyle e^{-\alpha mr}} factor equal to 1, everywhere.

  3. Negative energy - Wikipedia

    en.wikipedia.org/wiki/Negative_energy

    According to the theory of the Dirac sea, developed by Paul Dirac in 1930, the vacuum of space is full of negative energy. This theory was developed to explain the anomaly of negative-energy quantum states predicted by the Dirac equation. A year later, after work by Weyl, the negative energy concept was abandoned and replaced by a theory of ...

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    When k is less than one, the inverse-cube force is repulsive, whereas when k is greater than one, the force is attractive. An inverse-cube central force F 2 (r) has the form = where the numerator μ may be positive (repulsive) or negative (attractive). If such an inverse-cube force is introduced, Newton's theorem says that the corresponding ...

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...

  6. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    Next Newton proves his "Theorema II" which shows that if Kepler's second law results, then the force involved must be along the line between the two bodies. In other words, Newton proves what today might be called the "inverse Kepler problem": the orbit characteristics require the force to depend on the inverse square of the distance.

  7. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  8. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...

  9. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...

  1. Related searches why is attractive force negative in physics answer page pdf printable for veterans day

    negative energy physicsnegative energy universe