Search results
Results From The WOW.Com Content Network
Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU
Given an input matrix and a desired low rank , the randomized LU returns permutation matrices , and lower/upper trapezoidal matrices , of size and respectively, such that with high probability ‖ ‖ +, where is a constant that depends on the parameters of the algorithm and + is the (+)-th singular value of the input matrix .
Comment: The eigendecomposition is useful for understanding the solution of a system of linear ordinary differential equations or linear difference equations. For example, the difference equation + = starting from the initial condition = is solved by =, which is equivalent to =, where V and D are the matrices formed from the eigenvectors and ...
The classical Pade scheme for the first derivative at a cell with index (′) reads; ′ + ′ + + ′ = +. Where is the spacing between points with index , & +.The equation yields a fourth-order accurate solution for ′ when supplemented with suitable boundary conditions (typically periodic).
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
In Python, the function cholesky from the numpy.linalg module performs Cholesky decomposition. In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead.
In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + h / 2 ) and f ′(x − h / 2 ) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:
A square matrix is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if , = for all , with > +. A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if a i , i + 1 ≠ 0 {\displaystyle a_{i,i+1}\neq 0} for all i ∈ { 1 ...