When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    If such a linear dependence exists with at least a nonzero component, then the n vectors are linearly dependent. Linear dependencies among v 1 , ..., v n form a vector space. If the vectors are expressed by their coordinates, then the linear dependencies are the solutions of a homogeneous system of linear equations , with the coordinates of the ...

  3. Matroid - Wikipedia

    en.wikipedia.org/wiki/Matroid

    In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.

  4. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  5. Dependence relation - Wikipedia

    en.wikipedia.org/wiki/Dependence_relation

    If is a non-empty set with a dependence relation , then always has a basis with respect to . Furthermore, any two bases of X {\displaystyle X} have the same cardinality . If a S {\displaystyle a\triangleleft S} and S ⊆ T {\displaystyle S\subseteq T} , then a T {\displaystyle a\triangleleft T} , using property 3. and 1.

  6. Frame (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Frame_(linear_algebra)

    Given that {} spans and is linearly dependent, one strategy is to remove vectors from the set until it becomes linearly independent and forms a basis. There are some problems with this plan: There are some problems with this plan:

  7. Algebraic independence - Wikipedia

    en.wikipedia.org/wiki/Algebraic_independence

    Many finite matroids may be represented by a matrix over a field , in which the matroid elements correspond to matrix columns, and a set of elements is independent if the corresponding set of columns is linearly independent. Every matroid with a linear representation of this type may also be represented as an algebraic matroid, by choosing an ...

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix: A square matrix whose main diagonal comprises only zero elements. Integer matrix: A matrix whose entries are all integers. Logical matrix: A matrix with all entries either 0 or 1.

  9. Independent equation - Wikipedia

    en.wikipedia.org/wiki/Independent_equation

    The concepts of dependence and independence of systems are partially generalized in numerical linear algebra by the condition number, which (roughly) measures how close a system of equations is to being dependent (a condition number of infinity is a dependent system, and a system of orthogonal equations is maximally independent and has a ...