When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system.

  3. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    TOP (A) and BOTTOM (C) of the loop: a pair of parallel isobaric processes RIGHT (B) and LEFT (D) of the loop: a pair of parallel isochoric processes If the working substance is a perfect gas , U {\displaystyle U} is only a function of T {\displaystyle T} for a closed system since its internal pressure vanishes.

  4. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.

  5. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    The system always contains the same amount of matter, but (sensible) heat and (boundary) work can be exchanged across the boundary of the system. Whether a system can exchange heat, work, or both is dependent on the property of its boundary. Adiabatic boundary – not allowing any heat exchange: A thermally isolated system

  6. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...

  7. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than isentropic steps. The most common current application is in airbreathing jet engines and gas turbine engines.

  8. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...

  9. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)