Search results
Results From The WOW.Com Content Network
Essential singularities approach no limit, not even if valid answers are extended to include . In real analysis, a singularity or discontinuity is a property of a function alone. Any singularities that may exist in the derivative of a function are considered as belonging to the derivative, not to the original function.
Singularities of this kind include caustics, very familiar as the light patterns at the bottom of a swimming pool. Other ways in which singularities occur is by degeneration of manifold structure. The presence of symmetry can be good cause to consider orbifolds , which are manifolds that have acquired "corners" in a process of folding up ...
Penrose–Hawking singularity theorems, in general relativity theory, theorems about how gravitation produces singularities such as in black holes; Prandtl–Glauert singularity, the point at which a sudden drop in air pressure occurs; Singularity (climate), a weather phenomenon associated with a specific calendar date
The singularities of solutions of these equations are The point , and; The point 0 for types III, V and VI, and; The point 1 for type VI, and; Possibly some movable poles; For type I, the singularities are (movable) double poles of residue 0, and the solutions all have an infinite number of such poles in the complex plane.
Null singularities: These singularities occur on light-like or null surfaces. An example might be found in certain types of black hole interiors, such as the Cauchy horizon of a charged (Reissner–Nordström) or rotating black hole. A singularity can be either strong or weak:
Plot of the function exp(1/z), centered on the essential singularity at z = 0.The hue represents the complex argument, the luminance represents the absolute value.This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).
There are three types of singularities that can be found in mechanisms: direct-kinematics singularities, inverse-kinematics singularities, and combined singularities. These singularities occur when one or both Jacobian matrices of the mechanisms becomes singular of rank-deficient. [1]
In fact more is true: Schwarz's list underlies all second-order equations with regular singularities on compact Riemann surfaces having finite monodromy, by a pullback from the hypergeometric equation on the Riemann sphere by a complex analytic mapping, of degree computable from the equation's data. [1] [2]