Search results
Results From The WOW.Com Content Network
The antithetic variates technique consists, for every sample path obtained, in taking its antithetic path — that is given a path {, …,} to also take {, …,}.The advantage of this technique is twofold: it reduces the number of normal samples to be taken to generate N paths, and it reduces the variance of the sample paths, improving the precision.
From the MongoDB 2.6 release onward, the binaries for the official MongoDB RPM and DEB packages bind to localhost by default. From MongoDB 3.6, this default behavior was extended to all MongoDB packages across all platforms. As a result, all networked connections to the database are denied unless explicitly configured by an administrator. [59]
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used ...
REDUCE also supports procedural programming by ignoring statement values. Algebraic computation usually proceeds by transforming a mathematical expression into an equivalent but different form. This is called simplification, even though the result might be much longer. (The name REDUCE is a pun on this problem of intermediate expression swell!)
To address nuisance variables, researchers can employ different methods such as blocking or randomization. Blocking involves grouping experimental units based on levels of the nuisance variable to control for its influence. Randomization helps distribute the effects of nuisance variables evenly across treatment groups.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
Let the unknown parameter of interest be , and assume we have a statistic such that the expected value of m is μ: [] =, i.e. m is an unbiased estimator for μ. Suppose we calculate another statistic such that [] = is a known value.