When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    Since angle B is supplementary to both angles C and D, either of these angle measures may be used to determine the measure of Angle B. Using the measure of either angle C or angle D, we find the measure of angle B to be 180° − (180° − x) = 180° − 180° + x = x. Therefore, both angle A and angle B have measures equal to x and are equal ...

  3. Isometric projection - Wikipedia

    en.wikipedia.org/wiki/Isometric_projection

    From the two angles needed for an isometric projection, the value of the second may seem counterintuitive and deserves some further explanation. Let's first imagine a cube with sides of length 2, and its center at the axis origin, which means all its faces intersect the axes at a distance of 1 from the origin.

  4. Gradian - Wikipedia

    en.wikipedia.org/wiki/Gradian

    In trigonometry, the gradian – also known as the gon (from Ancient Greek γωνία (gōnía) ' angle '), grad, or grade [1] – is a unit of measurement of an angle, defined as one-hundredth of the right angle; in other words, 100 gradians is equal to 90 degrees.

  5. Axonometric projection - Wikipedia

    en.wikipedia.org/wiki/Axonometric_projection

    In isometric projection, the most commonly used form of axonometric projection in engineering drawing, [4] the direction of viewing is such that the three axes of space appear equally foreshortened, and there is a common angle of 120° between them. As the distortion caused by foreshortening is uniform, the proportionality between lengths is ...

  6. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The only difference is that Tait–Bryan angles represent rotations about three distinct axes (e.g. x-y-z, or x-y′-z″), while proper Euler angles use the same axis for both the first and third elemental rotations (e.g., z-x-z, or z-x′-z″). This implies a different definition for the line of nodes in the geometrical construction.

  7. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    Plane angle may be defined as θ = s/r, where θ is the magnitude in radians of the subtended angle, s is circular arc length, and r is radius. One radian corresponds to the angle for which s = r, hence 1 radian = 1 m/m = 1. [9] However, rad is only to be used to express angles, not to express ratios of lengths in general. [7]

  8. Oblique projection - Wikipedia

    en.wikipedia.org/wiki/Oblique_projection

    Oblique projection is commonly used in technical drawing. The cavalier projection was used by French military artists in the 18th century to depict fortifications. Oblique projection was used almost universally by Chinese artists from the 1st or 2nd centuries to the 18th century, especially to depict rectilinear objects such as houses. [1]

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.