Search results
Results From The WOW.Com Content Network
In artificial intelligence, symbolic artificial intelligence (also known as classical artificial intelligence or logic-based artificial intelligence) [1] [2] is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. [3]
Neural: Symbolic → Neural relies on symbolic reasoning to generate or label training data that is subsequently learned by a deep learning model, e.g., to train a neural model for symbolic computation by using a Macsyma-like symbolic mathematics system to create or label examples.
Artificial intelligence research has succeeded in developing many programs that are capable of intelligently solving particular problems. However, AI research has so far not been able to produce a system with artificial general intelligence -- the ability to solve a variety of novel problems, as humans do.
Today, artificial intelligence is mostly about artificial neural networks and deep learning. In fact, for most of its six-decade history, the field was dominated by symbolic artificial ...
In the philosophy of artificial intelligence, GOFAI ("Good old fashioned artificial intelligence") is classical symbolic AI, as opposed to other approaches, such as neural networks, situated robotics, narrow symbolic AI or neuro-symbolic AI. [1] [2] The term was coined by philosopher John Haugeland in his 1985 book Artificial Intelligence: The ...
Generative artificial intelligence (generative AI, GenAI, [166] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 167 ] [ 168 ] [ 169 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 170 ...
In designing an artificial intelligence agent, it was soon realized that representing common-sense knowledge, knowledge that humans simply take for granted, was essential to make an AI that could interact with humans using natural language. Cyc was meant to address this problem. The language they defined was known as CycL.
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.