Search results
Results From The WOW.Com Content Network
Aluminium sulfate is rarely, if ever, encountered as the anhydrous salt. It forms a number of different hydrates, of which the hexadecahydrate Al 2 (SO 4) 3 ·16H 2 O and octadecahydrate Al 2 (SO 4) 3 ·18H 2 O are the most common. The heptadecahydrate, whose formula can be written as [Al(H 2 O) 6] 2 (SO 4) 3 ·5H 2 O, occurs naturally as the ...
Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate is a white crystalline solid having a formula variously given as NaAlO 2, NaAl(OH) 4 (), [3] Na 2 O·Al 2 O 3, or Na 2 Al 2 O 4.
For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as H + + OH − → H 2 O. For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na + and Cl − take ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
When a strong acid, HA, reacts with a strong base, BOH, the reaction that occurs is + + as the acid and the base are fully dissociated and neither the cation B + nor the anion A − are involved in the neutralization reaction. [1] The enthalpy change for this reaction is -57.62 kJ/mol at 25 °C.
The ion-permeable ion-exchange membrane at the center of the cell allows only the sodium ions (Na +) to pass to the second chamber where they react with the hydroxide ions to produce caustic soda (NaOH) (B in figure): [1] Na + + OH − → NaOH The overall reaction for the electrolysis of brine is thus: 2NaCl + 2 H 2 O → Cl 2 + H 2 + 2NaOH
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [ 1 ] [ 2 ] The actual physiological potential depends on the ratio of the reduced ( Red ) and oxidized ( Ox ) forms according to the Nernst equation and the thermal voltage .