When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.

  3. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    The dihedral symmetry of the sphere generates two infinite sets of uniform polyhedra, prisms and antiprisms, and two more infinite set of degenerate polyhedra, the hosohedra and dihedra which exist as tilings on the sphere. The dihedral symmetry is represented by a fundamental triangle (p 2 2) counting the mirrors at each vertex.

  4. Point groups in four dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_four...

    The truncated cubic prism has this symmetry with Coxeter diagram and the cubic prism is a lower symmetry construction of the tesseract, as . Its chiral subgroup is [4,3,2] +, (), order 48, (Du Val #26 (O/C 2;O/C 2), Conway ± 1 / 24 [O×O]). An example is the snub cubic antiprism, , although it can not be made uniform. The ionic subgroups are:

  5. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are different notations for expressing these uniform solutions, Wythoff symbol, Coxeter diagram, and Coxeter's t-notation. Simple tiles are generated by Möbius triangles with whole numbers p,q,r, while Schwarz triangles allow rational numbers p,q,r and allow star polygon faces, and have overlapping elements.

  6. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    All these lunes share two common vertices. [13] A regular dihedron, {n, 2} [13] (2-hedron) in three-dimensional Euclidean space can be considered a degenerate prism consisting of two (planar) n-sided polygons connected "back-to-back", so that the resulting object has no depth, analogously to how a digon can be constructed with two line segments.

  8. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    A crossed prism is a nonconvex polyhedron constructed from a prism, where the vertices of one base are inverted around the center of this base (or rotated by 180°). This transforms the side rectangular faces into crossed rectangles. For a regular polygon base, the appearance is an n-gonal hour glass. All oblique edges pass through a single ...

  9. Biaugmented pentagonal prism - Wikipedia

    en.wikipedia.org/wiki/Biaugmented_pentagonal_prism

    The dihedral angle of an augmented pentagonal prism can be calculated by adding the dihedral angle of an equilateral square pyramid and the regular pentagonal prism: [4] the dihedral angle of an augmented pentagonal prism between two adjacent triangular faces is that of an equilateral square pyramid between two adjacent triangular faces, ⁡ (),