Search results
Results From The WOW.Com Content Network
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
0.5 Prehistory Pi: 3.14159 26535 89793 23846 [Mw 1] [OEIS 1] Ratio of a circle's circumference to its diameter. 1900 to 1600 BCE [2] Tau: 6.28318 53071 79586 47692 [3] [OEIS 2] Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2,
The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".
The term power tower [5] ... all hyperoperations greater than or equal to 3 have ... (Attempt to extend tetration to real numbers.) Ioannis Galidakis, Mathematics, ...
In mathematical analysis, factorials are used in power series for the exponential function and other functions, and they also have applications in algebra, number theory, probability theory, and computer science. Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries.
Regular numbers are numbers that evenly divide powers of 60 (or, equivalently, powers of 30). Equivalently, they are the numbers whose only prime divisors are 2, 3, and 5. As an example, 60 2 = 3600 = 48 × 75, so as divisors of a power of 60 both 48 and 75 are regular.
5⋅5, or 5 2 (5 squared), can be shown graphically using a square. Each block represents one unit, 1⋅1, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.
That is, where m is the number of miles, k is the number of kilometres and e is Euler's number. A density of one ounce per cubic foot is very close to one kilogram per cubic metre: 1 oz/ft 3 = 1 oz × 0.028349523125 kg/oz / (1 ft × 0.3048 m/ft) 3 ≈ 1.0012 kg/m 3 .