When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hill equation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Hill_equation_(biochemistry)

    The Hill equation is useful for determining the degree of cooperativity of the ligand(s) binding to the enzyme or receptor. The Hill coefficient provides a way to quantify the degree of interaction between ligand binding sites. [5] The Hill equation (for response) is important in the construction of dose-response curves.

  3. Cooperative binding - Wikipedia

    en.wikipedia.org/wiki/Cooperative_binding

    The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:

  4. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    One manifestation of this is enzymes or receptors that have multiple binding sites where the affinity of the binding sites for a ligand is apparently increased, positive cooperativity, or decreased, negative cooperativity, upon the binding of a ligand to a binding site. For example, when an oxygen atom binds to one of hemoglobin's four binding ...

  5. Monod–Wyman–Changeux model - Wikipedia

    en.wikipedia.org/wiki/Monod–Wyman–Changeux_model

    This model explains sigmoidal binding properties (i.e. positive cooperativity) as change in concentration of ligand over a small range will lead to a large increase in the proportion of molecules in the R state, and thus will lead to a high association of the ligand to the protein. It cannot explain negative cooperativity.

  6. Sequential model - Wikipedia

    en.wikipedia.org/wiki/Sequential_model

    A multimeric protein's affinity for a ligand changes upon binding to a ligand, a process known as cooperativity. This phenomenon was first discovered by Christian Bohr's analysis of hemoglobin, whose binding affinity for molecular oxygen increases as oxygen binds its subunits. [1]

  7. Reversible Hill equation - Wikipedia

    en.wikipedia.org/wiki/Reversible_Hill_Equation

    Hofmeyr and Cornish-Bowden first published the reversible form of the Hill equation. [1] The equation has since been discussed elsewhere [ 3 ] [ 4 ] and the model has also been used in a number of kinetic models such as a model of Phosphofructokinase and Glycolytic Oscillations in the Pancreatic β-cells [ 5 ] or a model of a glucose-xylose co ...

  8. Hemocyanin - Wikipedia

    en.wikipedia.org/wiki/Hemocyanin

    Hemoglobin, for comparison, has a Hill coefficient of usually 2.8–3.0. In these cases of cooperative binding hemocyanin was arranged in protein sub-complexes of 6 subunits (hexamer) each with one oxygen binding site; binding of oxygen on one unit in the complex would increase the affinity of the neighboring units. Each hexamer complex was ...

  9. Ultrasensitivity - Wikipedia

    en.wikipedia.org/wiki/Ultrasensitivity

    where is the Hill coefficient which quantifies the steepness of the sigmoidal stimulus-response curve and it is therefore a sensitivity parameter. It is often used to assess the cooperativity of a system. A Hill coefficient greater than one is indicative of positive cooperativity and thus, the system exhibits ultrasensitivity. [34]