When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.

  3. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    The slenderness ratio is an indicator of the specimen's resistance to bending and buckling, due to its length and cross section. If the slenderness ratio is less than the critical slenderness ratio, the column is considered to be a short column. In these cases, the Johnson parabola is more applicable than the Euler formula. [5]

  4. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  5. Column - Wikipedia

    en.wikipedia.org/wiki/Column

    A steel column is extended by welding or bolting splice plates on the flanges and webs or walls of the columns to provide a few inches or feet of load transfer from the upper to the lower column section. A timber column is usually extended by the use of a steel tube or wrapped-around sheet-metal plate bolted onto the two connecting timber sections.

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  7. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The beam is originally straight, and any taper is slight; The beam experiences only linear elastic deformation; The beam is slender (its length to height ratio is greater than 10) Only small deflections are considered (max deflection less than 1/10 of the span).

  8. Slenderness ratio - Wikipedia

    en.wikipedia.org/wiki/Slenderness_ratio

    The effective length is calculated from the actual length of the member considering the rotational and relative translational boundary conditions at the ends. Slenderness captures the influence on buckling of all the geometric aspects of the column, namely its length, area, and second moment of area .

  9. Compression member - Wikipedia

    en.wikipedia.org/wiki/Compression_member

    A compression member is a structural element that primarily resists forces, which act to shorten or compress the member along its length. Commonly found in engineering and architectural structures, such as columns, struts, and braces, compression members are designed to withstand loads that push or press on them without buckling or failing. The ...