Search results
Results From The WOW.Com Content Network
The spectrum of radiation emitted by hydrogen is non-continuous or discrete. Here is an illustration of the first series of hydrogen emission lines: The Lyman series. Historically, explaining the nature of the hydrogen spectrum was a considerable problem in physics.
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
A gamma ray, also known as gamma radiation (symbol γ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays.
Natural sources produce EM radiation across the spectrum. EM radiation with a wavelength between approximately 400 nm and 700 nm is directly detected by the human eye and perceived as visible light. Other wavelengths, especially nearby infrared (longer than 700 nm) and ultraviolet (shorter than 400 nm) are also sometimes referred to as light.
Formally, the wavelength version of Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength, peaks at the wavelength given by: = where T is the absolute temperature and b is a constant of proportionality called Wien's displacement constant, equal to 2.897 771 955... × 10 −3 m⋅K, [1] [2] or b ...
The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.
Solar spectrum with Fraunhofer lines as it appears visually. A material's absorption spectrum is the fraction of incident radiation absorbed by the material over a range of frequencies of electromagnetic radiation. The absorption spectrum is primarily determined [2] [3] [4] by the atomic and molecular composition of the material.
There is little radiation flux (in terms of W/m 2) to the Earth's surface below 0.2μm or above 3.0μm, although photon flux remains significant as far as 6.0μm, compared to shorter wavelength fluxes. UV-C radiation spans from 0.1μm to .28μm, UV-B from 0.28μm to 0.315μm, UV-A from 0.315μm to 0.4μm, the visible spectrum from 0.4μm to 0 ...